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Abstract  

Different formulations and measures that may be used for evaluating the complexity of systems 
are gathered in this Technical Note. They might be useful for describing aspects of military 
complex systems. They were extracted from documents issued from the scientific literature 
dedicated to Complexity Theory, chaos and complex systems. 

Résumé  

 Différentes formulations et mesures qui peuvent être utilisées pour évaluer la complexité des 
systèmes sont rassemblées dans ce document. Ces formulations et mesures peuvent être utiles 
pour décrire différents aspects des systèmes militaires complexes. Elles ont été extraites de 
documents provenant de la littérature scientifique traitant de la théorie de la complexité, du chaos 
et des systèmes complexes. 
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1 Introduction 

This document contains the results of numerous searches that were made in the context of a state-
of-the-art in the domain of the Complexity Theory, chaos and complex systems. It aims at 
regrouping together current ways of formulating and measuring complexity of complex systems. 

1.1 Context and Scope of this Document 

This document is the second of a set of five DRDC Valcartier reports dedicated to the study of 
complexity theory, chaos and complex systems (Couture, 2006a, 2006b, 2006c, 2006d, and one to 
be published in 2007). It is part of an overarching project being carried on at DRDC Valcartier, 
Project 15bp01 – Defensive Software Design. It focuses mainly on the presentation of concepts 
from this theory. There are only a few references to the architecting and engineering aspects of 
complexity. These aspects will be covered in another document. 

1.2 The Used Methodology  

Figure 1 depicts the general methodology used for this study. It is characterized by a main 
iterative and incremental loop (steps 1 and 2), which includes a number of sequential and parallel 
activities (steps 3, 4 and 5). This loop permits on-the-fly adjustment and optimization. 

The five main activities or steps are: 

1. Search literature, projects, groups, etc: Internet searches were made using Google and 
other search engines. A number of specialized databases were also searched (Dialog Database 
Catalog, 2005). These databases are listed in Annex C of Couture (2006a). 

2. Select potentially useful documents: Documents were selected based on their potential 
applicability to the military context.  

3. Study selected documents: Approximately 30–40% of the selected documents were read and 
studied in greater detail.  

4. Investigate in greater depth for the military context: This involved finding elements that 
offer potential solutions in the military context.  

5. Update documents: The content of each document was updated on the fly at each iteration. 
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Figure 1 The Methodology Used in this Work. 

The reports generated by this study are listed in Table 1. The first four reports will be published 
by the end of phase one of the study (by March 2007). The last will be published by the end of 
phase two (late 2007). 
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Table 1 List of Documents Issued from this Work.  

Title Description 

Complexity and chaos – State-of-
the-art; List of works, experts, 
organizations, projects, journals, 
conferences and tools. 

This Technical Note provides 471 references to scientific 
studies, organizations, scientific journals, conferences, 
experts and tools, plus 713 additional Internet addresses 
that are related to complexity theory, chaos and complex 
systems. Abstracts are included where available. 

(Couture, 2006a). 

Complexity and chaos – State-of-
the-art; Formulations and 
measures of complexity.  

Different formulations and measures of system complexity 
are provided in this Technical Note. They were drawn 
from the scientific literature on complexity theory, chaos 
and complex systems.  

(This document). 

Complexity and chaos – State-of-
the-art; Glossary. 

This Technical Note defines 335 key words related to 
complexity theory, chaos and complex systems. The 
definitions were extracted from the scientific literature. 

(Couture, 2006c). 

Complexity and chaos – State-of-
the-art; Overview of theoretical 
concepts. 

This Technical Memorandum presents an overview of 
theoretical concepts pertaining to complexity theory.  

(Couture, 2007). 

Complexity and chaos – State-of-
the-art; The Engineering of 
complex adaptive systems. 

Descriptions of the current approaches, methodologies and 
tools used to address problems related to the architecting, 
engineering and improvement of complex systems is 
included in this Technical Report.  

(To be published in 2007). 

1.3 How to use this Document  

This report is a starting point reference for the search of information related to the current ways to 
formulate and measure the complexity of systems. Considering the quantity of information 
included in this document, three ways of searching are proposed: 

• To get a general survey on a specific subject: The reader may simply use the Table of 
Content for locating specific subjects. 

• To find specific information on a specific subject: The reader must use its word 
processor’s search engine to find all appearances of selected key words within this 
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document. S/he will also find appropriate key words and addresses that can be re-used in 
further searches over the Internet for instance. 

• Edmonds’ list of references is also an important source of information (Edmonds, 1999). 
The reader is invited to refer to this important PhD Thesis. 
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2 Formulations and Measures of Complexity 

This Chapter contains a number of 64 formulations/measures of complexity for complex systems 
pertaining to different domains or disciplines. A copy of Edmonds’ list of 500 references 
(Edmonds, 1999) has been included in Annex A in order to facilitate the finding of cited 
documents. 

2.1 Abstract Computational Complexity 

(Edmonds, 1999): Blum [67] proposed an abstract definition of computational complexity. If 
pi(n) are the functions representing the computation of the programs Pi, then ci(n) are a set of 
complexity measures iff ci(n) is defined exactly when pi(n) is defined and the predicate ci(n)=m is 
decidable. This definition neatly includes the time and space measures as well as many other 
sensible resource measures (such as the number of jumps executed) and is strong enough to prove 
many of the important theories concerning them. However this definition is too broad as it allows 
measures which don't obey the subprogram property (if P is a program that first applies a 
subprogram Q to an input and then a subprogram R to the result, then the complexity of P should 
be at least as great as that of Q or R). Thus according to this approach you get programs with 
more complex subprograms. Fixes for the abstract definition of computational complexity are 
suggested by Turney in [444, 445, 446], and Ausiello suggests a weakened version in [31]. [66] 
argues that computational complexity should be extended over other fields like the real numbers. 

2.2 Algorithmic Complexity 

(Flake, 1998): The size of the smallest program that can produce a particular sequence of 
numbers. Regular patterns have low algorithmic complexity and random sequences have high 
algorithmic complexity. 

2.3 Algorithmic Information Complexity 

(Edmonds, 1999): The Algorithmic Information Complexity (AIC) of a string of symbols is the 
length of the shortest program to produce it as an output. The program is usually taken as 
running on a Turing Machine. It was invented by Solomonoff [419], Kolmogorov [266] and 
Chaitin [99, 100, 101] separately, although perhaps anticipated by Vitushkin (section 8.45 on 
page 161). It has been one of the the most influential complexity measures (along with that of 
computational complexity) and has inspired many variations and enhancements including 
‘sophistication’ (section 8.42 on page 159), and ‘logical depth’ (section 8.4 on page 138). 
Although Solomonoff considered it as a candidate for selection amongst equally supported 
scientific theories (i.e. a measure of simplicity – section 8.37 on page 156), Kolmogorov and 
Chaitin considered it as a measure of information (see section 8.15 on page 144 and section 8.24 
on page 149). It has many interesting formal properties [99], including: 1. The more ordered the 
string, the shorter the program, and hence less complex. 2. Incompressible strings (those whose 
programs are not shorter than themselves) are indistinguishable from random strings. 3. Most 
long strings are incompressible. 4. In a range of formal systems you can't prove (within that 
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system) that there are strings above a certain fixed level of complexity (derived basically from the 
AIC of its axioms). 5. In general it is uncomputable. Property 2 illustrates the deep connection 
between AIC and disorder. This is particularly evident in physics where a very close connection 
between Algorithmic complexity and entropy has been shown [449], to the extent that it is often 
referred to as an entropy. Property 4 indicates that the AIC complexity is more of an information 
measure. While one might believe that it is not possible to produce more information within a 
formal system than is encoded by the axioms, it would be extremely counter-intuitive if there was 
a limit to how complex one could prove strings in it to be. AIC has been applied in many ways: to 
define randomness in a non-probabilistic way [309, 499]; to capture descriptive complexity 
[293] (see also section 8.8 on page 141); Rissanen uses a statistical version to motivate a 
principled trade-off between the size of model and its error in [377, 378, 379]; to biological 
complexity [203, 223, 345]; to cognitive models [397]; economic models [452] and data 
compression [499]. Lempel-Ziv encoding can be seen as a computable approximation to it [279, 
495]. Given that it is better characterised as an information measure rather than complexity, it 
has very close connections with entropy, as explored in [169, 420, 496, 497]. It is generalised in 
[80]. Good summaries of the many formal results and applications can be found in [40, 41, 70, 
118, 286]. Other formal results include [80, 284, 456, 451, 494]. A summary of philosophical 
applications can be found in [285], with others in [102, 301, 469].  

(Sommerer and Mignonneau, 2002): The best-known definition of complexity is the 
Kolmogorov-Chaitin-Solomonoff (KCS) definition [62], describing Algorithmic Information 
Complexity (AIC), which places complexity somewhere between order and randomness; that is, 
complexity increases as Pmin, the shortest algorithm that can generate a digit sequence, S, 
increases to the length equal to the sequence to be computed; when the algorithm reaches this 
incompressibility limit the sequence is de.ned as random. The KCS de.nition distinguishes 
between “highly ordered” and “highly complex” structures. 

2.4 Arithmetic Complexity 

(Edmonds, 1999): This is the minimum number of arithmetic operations needed to complete a 
task. This is important in order to make computational algorithms more efficient, for example 
Strassen [424] improved upon Gauss's method for solving linear equations from operations to C 
x n2.71. This is more of a practical definition and not intended as a general model of complexity. 
The operations of arithmetic are very particular. It also does not take into account the precision 
of the operations or of rounding errors. A summary of the theory of the arithmetic hierarchy can 
be found in [178]. 

2.5 Bennett's ‘Logical Depth’ 

(Edmonds, 1999): Bennett [54, 55, 56] defines ‘logical depth’ as the running-time to generate 
the object in question by a near-incompressible program. Strictly the depth of a string x at level s 
is: Ds (x) = min{T(p) p–p∗ <s∧U(p)= x}, where p ranges over programs, T(p) is the time taken by 
program p, p* is the smallest such program and U is a universal Turing computer. He states that 
this is intended as a measure of the value of information. For example, tide-tables can have a 
greater value than the equations which were used to calculate them as a lot of useful computation 
has been done. Thus he says [57]: “Logically deep objects… contain internal evidence of having 
been the result of a long computation or slow-to-simulate dynamically process and could not 
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plausibly have originated otherwise.”. The plausibility of its origin comes from the assumption 
that the most likely program to produce an output would be the shortest one. This idea comes 
from Solomonoff. He justifies this as a physically plausible measure of complexity by its 
obedience to the “slow growth law” of complexity. This informal law states that complexity can 
only arise slowly through stochastic processes, as presumably has occurred in evolution. By its 
construction one cannot produce a deep object from a shallow one by a deterministic process and 
only improbably by a stochastic one. Thus random strings and very simple ones both have a low 
logical depth. A random string is incompressible and hence the minimal program that produces 
it, is a simple copying program, which is quick. A simple pattern can be produced by a simple 
program, and so will also be fairly quick. Koppel [268] shows that Logical Depth is the same as 
Sophistication (section 8.42 on page 159) for infinite strings. 

2.6 Cognitive Complexity 

(Edmonds, 1999): In cognitive psychology, several types of complexity are distinguished. The 
most discussed of these is Cognitive Complexity. This was defined by Kelly as a part of his theory 
of personality [250]. He developed his ‘role construct repertory’ test to test it. Since then it has 
been used as a basis for discussion on the complexity of personal constructions of the real world 
(and particularly of other people) in psychology. It asks the subjects to rate a number of people 
known to them (e.g. closest friend of same sex) on a number of attributes (like Outgoing vs. Shy). 
The dimension of the inferred mental model of these people is then estimated as their cognitive 
complexity. So, for example, people who assign to all their friends positive attributes and to their 
enemies negative attributes would have a one-dimensional mental model of their acquaintances, 
as everybody is aligned along this good/friend - bad/enemy scale. Such people are said to be 
“cognitively simple”. A person who indicated that some of both their friends and enemies were 
good and bad would have at least a two-dimensional model with people placed across a good-
bad, friend-enemy pair of axes. This person would have a higher score and would be called 
“more cognitively complex”. Thus the level of cognitive complexity indicates the number of 
potential relationships between the various attributes. Quite a number of variations of this has 
been suggested to capture this idea [404]. Unfortunately these seem to measure slightly different 
things as they do not correlate in practice [204], although they do have some robustness over 
time [342]. There does not seem to be any strong connection between cognitive complexity and 
IQ [95], innovation [187], intellectual sophistication [416], loquacity [81] or educational level 
[366]. It does seem to have some relation to the ability to use complex language [48, 409]. The 
application of hierarchically structured algorithmic information is discussed in [397]. A synthesis 
of several measures of cognitive complexity is suggested in [413] in the internal representation 
used by subjects. Other related measures include: [59, 382, 426]. 

(Xing and Manning, 2005): Another line of complexity studies involves cognitive complexity. 
While complexity studies generated by information theory focus on the complexity of a system 
itself, studies of cognitive complexity focus on observers: complexity from the perspective of the 
observer, i.e., the users. Since air traffic control involves cognitive tasks such as monitoring the 
situation, resolving conflicts, issuing instructions, etc., it is important to understand how cog-
nitive complexity is measured to assess the complexity of ATC displays. Cognition may best be 
thought of a construct system composed of constructs and elements (Kelly 1955). The constructs 
are transparent templates that a person uses to comprehend the world. In a sense then, humans 
create the templates and fit the perception of the world to them. 
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2.7 Computational Complexity 

(Sommerer and Mignonneau, 2002): Computational complexity is now a much studied area 
with many formal results [66]. The foundation of complexity theory is the research into 
computability theory undertaken since the 1930s onward by Alan Turing, Alonzo Church and 
Stephen Kleene [67], among others. The primary considerations then were the formalization of 
the notion of a computer (e.g. the Turing machine, Church’s lambda calculus) and whether such 
a computer could solve any mathematical problem. 

2.8 Connectivity 

(Edmonds, 1999): The greater the extent of inter-connections between components of a system, 
the more difficult it is to decompose the system without changing its behaviour. Thus the 
connectance of a system (especially when analysed as a graph [367]) becomes a good indication 
of the potential for complex behaviour, in particular the likelihood that the system will achieve an 
equilibrium. The connectivity of a system has been variously measured, including the number of 
relations (section 8.30 on page 153) and the cyclomatic number (section 8.7 on page 140). 
Applications include: the reliability of circuits [470]; the stability of random linear systems of 
equations [25]; stability in computational communities [259]; stability in ecosystems [86, 227, 
353]; the diversity of ecosystems [308]; the structure of memory [273]; logical and 
computational properties of bounded graphs [319]; competition in networks [373]; random 
digraphs [405]; chemical reaction mechanisms [491]; and general emergent behaviour in 
biological systems [197]. 

2.9 Crutchfield’s Topological Complexity 

(Sommerer and Mignonneau, 2002): The topological complexity described by James Crutch. 
eld [65] is a measure of the size of the minimal computational model (typically a . nite automaton 
of some variety) in the minimal formal language in which it has a . nite model. Thus the 
complexity of the model is “objectivized” not only by considering minimal models but also as 
related to the . xed hierarchy of formal languages. 

2.10 Cyclomatic Complexity.  

(Xing and Manning, 2005): McCabe (1976) defined cyclomatic complexity as the difference 
between the total number of transitions and the total number of states.  

2.11 Cyclomatic Number 

(Edmonds, 1999): The most basic graph measure (apart from the number of vertices) is the 
cyclomatic number of the graph. This is basically the number of independent loops in a graph. It 
is easily calculated by the formula n(G) = m - n + p, where m is the number of arcs, n the number 
of vertices and p the number of disjoint partitions the graph divides into. This intuitively captures 
the inter-connectedness of a graph or system; a hierarchically structured machine is completely 
predictable (a tree has no loops), whilst one with many feedback loops can exhibit more complex 
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behaviour. An army is organised on hierarchical lines, presumably to simplify the chain of 
command to make it more predictable and hence more controllable. On the other hand, a creative 
committee meets to allow the maximum number of communication channels to enable the 
unpredictable to occur. In general there is no direct relation between the size (number of nodes) 
and the (cyclomatic) complexity. If a system is represented by a graph with the presence of some 
relation indicated by an arc, then the number of nodes will limit the cyclomatic complexity. This 
effect is only significant with very few nodes as the number of possible arcs goes up exponentially 
with the number of nodes. For the theory of this area see [436] McCabe [313] uses this as a 
measure of program complexity, in particular to calculate the number of different logical paths 
through a program to gauge how many tests it might need. Other applications include: 
complexity of simulation models [403]; and the difficulty of software maintenance [49, 125, 232]. 
For discussion on this see section 5.4 on page 106. 

2.12 Descriptive/Interpretative Complexity 

(Edmonds, 1999): Löfgren [293] writing from a biological and psychological context, 
distinguishes between descriptive and interpretative complexities. In a system with a description 
(like DNA) and its realisation (the proteins in the cell), he associates his two measures of 
complexity with the two processes of interpretation and description. That is the complexity of 
encoding the realisation into a descriptive code and decoding it back into a realisation of that 
code. Löfgren chooses Kolmogorov complexity (section 8.2 on page 136) for the process of 
description and an ordering based on logical strength (section 8.20 on page 146) for the 
interpretative complexity. 

(Sommerer and Mignonneau, 2002): In 1969, Ronald Fagin decided to study spectra (the 
spectrum of a first-order sentence is the set of cardinalities of its finite models) and Asser’s 
problem (1955): “Is the class of spectra closed under complementation?” [68] In 1970, his 
investigations expanded to generalized spectra (i.e. existential second-order spectra where not all 
relation symbols are quantified out). Fagin’s most important result was probably his 
characterization of NP as the class of generalized spectra in 1974. Interest in the subject has now 
exploded, mainly due to the intimate relationship (first hinted at by Fagin) between finite model 
theory and complexity theory [69]. In fact, there is an established subject area within finite model 
theory dealing explicitly with this relationship: descriptive complexity theory. 

2.13 Dimension of Attractor 

(Edmonds, 1999): Chaotic processes are difficult to model. A small change in state now causes a 
large change later which makes it impossible to predict the exact state beyond a certain time 
limit. This does not mean that all aspects of the process are impossible to model. It is possible to 
estimate the processes' attractor in state space; this is often fractal with chaotic processes. The 
dimension of the attractor is a measure of how complex the process is. Depending on the method 
of convergence for the calculation of a dimension for the attractor you get a slightly different 
measure. These, in fact, form a sequence of dimensions. For an accessible introduction see Baker 
[39]. 
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2.14 Ease of Decomposition 

(Edmonds, 1999): The ease with which a system can be decomposed into sub-systems has close 
connections with the “analytic complexity” of section 5.2 on page 87. The general area is 
covered by [18, 110, 144, 338, 421]. Some techniques for systematic decomposition are: the use 
of a matrix algorithm to plan the use of multiplexers for circuits [278]; a graphical approach in 
[242]; decomposing difference equations [30, 306]; a hierarchical holographic algorithm [72]; 
the design of decision support facilities [225]; a systems approach [157]; and a technique based 
on whether data relations commute [131]. The converse of and complement to decomposability is 
reconstructability analysis [94]. 

2.15 Economic Complexity 

(Edmonds, 1999): “Complexity” in economics, frequently means merely that some of the usual 
simplifying assumptions do not hold. An example of these assumptions is that an agent acts as if it 
can infer the action to perfectly optimise its utility. This goes back to Simon’s distinction between 
procedural and substantive rationality [415]. See the paper in Appendix 7 - Complexity and 
Economics, for a full discussion of the concept of complexity in economics. Some papers that 
cover this are [10, 14, 20, 172, 173, 200]. In game-theory, there has been some more direct 
formulation of actual complexity measures, including: a critique of the “number of states” 
measure [43] (section 8.32 on page 153); the information of strategies [290]; a survey of the 
area [229]. Another area deals with choice processes, including: the group-theoretic complexity 
of decision rules [163]; a survey of choice processes and complexity [192], the computability of 
choice functions [251]; hierarchies [484]; and the cardinality of collections of decisions [52]. 

2.16 Effective Measure Complexity 

(Sommerer and Mignonneau, 2002): Peter Grassberger [75] defines the Effective Measure 
Complexity (EMC) of a pattern as the asymptotic behavior of the amount of information required 
to predict the next symbol to the level of granularity. EMC can be seen as the dif. culty of 
predicting the future values of a stationary series, as measured by the size of regular expression 
of the required model. A similar approach is taken by Badii and Politi. 

2.17 Entropy 

(Edmonds, 1999): In physics, entropy measures the level of disorder in a thermodynamic system. 
The more disordered it is, the more information is needed to describe it precisely. In particular 
systems with very low entropy are simple to describe (they don't move around a lot). Thus 
complexity and entropy can be associated, although this was not intended by its originators 
[408]. Entropy based measures are essentially probabilistic. The Boltzman-Gibbs-Shannon 
entropy is most frequently used in physics, but Algorithmic Complexity can also be used if the 
complexity of the whole ensemble is low [497]. The principle of maximum entropy [282] has been 
used to help formalise complexity [114, 156, 171]. Entropy based measures have often been used 
as measures of complexity including: the regularity in noisy time series [354]; the topology of 
chemical reactions [492]; coalitions of economic agents [452]; physical computation [496]; the 
difficulty of system diagnosis [183]; artificial life [371]; and the complexity of graphs [332]. 
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2.18 Goodman's Complexity 

(Edmonds, 1999): Goodman [186] has devised an elaborate categorisation of extra-logical 
predicates, based on expressiveness. For example, a general predicate is deemed more complex 
than a symmetric one, as it includes the later as a specific example. Likewise a three place 
predicate is more complex than a two place one. Goodman builds upon this starting point. The 
idea is that when faced with two theories that have equal supporting experimental evidence one 
should choose the simpler one using this measure. The complexity of a complex statement is 
merely the sum of the complexities of its component predicates, regardless of the structure of the 
statement. It is similar in spirit to Kemeny’s measure (section 8.18 on page 146). A recent defence 
and reformulation of this idea has been made by Richmond in [376]. 

(Sommerer and Mignonneau, 2002): Nelson Goodman [71] has devised an elaborate 
categorization of extra-logical predicates based on expressiveness. For example, a general 
predicate is deemed more complex than a symmetric one, as it includes the later as a speci. c 
example. Likewise, a three-place predicate is more complex than a two-place one. Goodman 
builds upon this starting point. The idea is that, when faced with two theories that have equal 
supporting experimental evidence, one should choose the simpler one using this measure. The 
complexity of a complex statement is merely the sum of the complexities of its component 
predicates, regardless of the structure of the statement. 

2.19 Hieratical complexity.  

(Xing and Manning, 2005): This definition is also concerned with structural rules. A complex 
system is often constructed hierarchically. That is, it is composed of structures on several scales 
or levels. These may be scales of space or time, or levels within a domain-specific functional 
space. For example, an ATC display may be composed of several windows, consisting of different 
types of text and graphical regions, and each text region (such as a datablock) containing several 
types of information. With this in mind, Bates and Shepard (1993) assumed that a system is 
composed of elementary units with local structures and the interconnections between the local 
structures are governed by rules. They suggested that complexity is manifested as variability in 
the convergence and divergence of interconnections. Then the dimensionality of local structures, 
number of local structures, and the range of connections all contribute to the global complexity. 
Moreover, if local regions possess certain computational abilities, then multiple regions can 
interact to achieve greater complexity.  

2.20 Hinegardner and Engelberg’s Number of Parts Definition. 

(Sommerer and Mignonneau, 2002): Perhaps the simplest measure of complexity is that 
suggested by R. Hinegardner and H. Engelberg [63]: the number of different parts. Hinegardner 
and Engelberg’s measure evokes “exploded” diagrams of pieces of machinery. They give some 
indication of complexity, but leave out what is perhaps most important: “organization” and 
“levels of organization” [64]. 
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2.21 Horn Complexity 

(Edmonds, 1999): The Horn complexity of a propositional function is the minimum length of a 
Horn formula (in its working variables) that defines that function. This was defined by Aanderaa 
and Börger [1] as a measure of the logical complexity of Boolean functions. It is polynomially 
related to the network complexity [2], described below (section 8.26 on page 151). 

(Sommerer and Mignonneau, 2002): The Horn complexity of a propositional function is the 
minimum length of a Horn formula (in its working variables) that de. nes that function. This was 
de.ned by S.O. Aaderaa and Egon Börger [73] as a measure of the logical complexity of Boolean 
functions. It is polynomially related to network or circuit complexity, which is the minimum 
number of logical gates needed to implement a logical function [74]. 

2.22 Image complexity  

(Xing and Manning, 2005): A digital image is numerically specified; thus, the information 
content can be easily computed using information theory. Many algorithms have been developed 
to compute image complexity. The standard Boltzmann-Gibbs entropy measure defines 
complexity with respect to a given size of a window of view. According to the definition, image 
complexity, measured as configurational entropy, is a function of the total number of 
distinguishable spatial arrangements within view windows of a given size. The statistical 
paradigms based on this measure have shown great success in quantifying image complexity. 
However, experiments have shown that information complexity computed in term of entropy does 
not correspond to perceived complexity. While entropy is a measure of image disorder and 
reflects the lack of spatial homogeneity, complexity is a combination of order and disorder. 
Indeed, Grassberger (1986, 1991) has shown that complexity is sometimes posited as a mid-point 
between order and disorder.  

2.23 Information complexity  

(Edmonds, 1999): The amount of information a system encodes or the amount of information 
needed to describe a system has a loose connection with its complexity. As noted above, there is a 
close connection between the amount of information and disorder. Using the Algorithmic 
Complexity (section 8.2 on page 136) measure of information, disordered patterns hold the most 
information, patterns encoding the maximum amount of information are indistinguishable from 
random patterns. Information can be measured deterministically using algorithmic information 
complexity (section 8.2 on page 136) or probabilistically using entropy (section 8.12 on page 
143). Either of these can be used to define mutual information (section 8.25 on page 151). See 
also section immediately below (section 8.16 on page 145). Klir exhibits an axiomatic framework 
for complexity similar to those I list in section 5.2 on page 87, combined with the requirement 
that complexity should be proportional to the information required to resolve any uncertainty 
[262, 263, 264, 265]. This may be seen as a formulation of Waxman’s “problem complexity” 
[463]. A number of approaches which seek to combine elements of both algorithmic and shannon 
information include: [170, 378, 452, 496]. Computational complexity has been extended to cover 
information flow by adding a cost function to the information used by a computation [440, 441, 
442]. Applications include: charting the increase in information in the evolution of finite 
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automata [26, 27]; the fluctuation of information in 1-D automata [47]; its connection with 
logical depth in evolution [53]; its connections to computational complexity [138]; the 
connection between various measures of information via random vectors [144]; the regularity of 
short noisy chaotic series [160]; error-prone sections of programs by potential information flow 
[214, 277]; systems problem solving [262]; the classification of strategies in repeated games 
[290]; the estimation of the information of a pattern [340]; and a principle of the minimum 
increase in evolution [399]. 

 (Xing and Manning, 2005): Complexity has been extensively studied within the field of 
information theory, where the term “information complexity (IC)” is frequently used to describe 
complexity from the perspective of a system. There have been many attempts to quantify IC 
theoretically. Below we list some widely used complexity measures. These measures do not 
necessarily exclude each other. Instead, they emphasize different aspects of complexity and are 
somewhat complementary. 

• Kolmogorov complexity. 

• Topological complexity. 

• Mutual information. 

• Logical depth. 

• Kauffman’s complexity. 

• Hiearchical complexity. 

2.24 Information Gain in Hierarchically Approximation and 
Scaling 

(Edmonds, 1999): Attention in physics has focused on the complexity of chaotic physical 
processes with a fractal nature, where one gets different behaviours at different levels of 
granularity. In 1986 Grassberger introduced “Effective Measure Complexity” [193], which 
measured the asymptotic increase in information with increased scale. He develops this in [194, 
195]. Badii, Politi and others [33, 34, 35, 36, 130] use trees of increasingly detailed Markov 
models to approximate a growing pattern. Each branch off a node is a possible extension of the 
pattern that may follow. He then defines the complexity of the pattern as the (Shannon) 
information gain in each level over the size of the tree at the level, taking the limit at infinitely 
many levels. Any Markov process has zero complexity. This is to reflect the difficulty in predicting 
complex systems. The class of easily predicted systems that Badii focuses on are those which 
exhibit different behaviours at different levels of detail. He says “A system is complex if it reveals 
different laws (interactions) at different resolution (coarse grinning) levels.”. [202] argues that 
these measures assume that the process is stationary, i.e. is basically a Markov process and [457] 
classifies them according to whether they are based on homogeneous or generated partitions and 
whether they are based on dynamic or structural elements. Other papers in this area include: [3, 
7, 28, 29, 350, 480, 490]. A good review of this whole area is [36]. 

DRDC Valcartier TN 2006-451 13 
 
 

 
 



 
 

2.25 Irreducibility 

(Edmonds, 1999): Holists often use the word “complexity” for that which is irreducible [339] (at 
least by current practice). This is, in a sense, an extreme case of the difficulty of decomposition 
(section 8.10 on page 142). Such approaches include: [13] where the importance of size to 
qualitative behaviour is pointed out; [468] which argues that the evolution of multiple and 
overlapping functions will limit reduction in biology; [11] which discusses the application to 
public policy in forestry; [247] which charts how chaos challenges the reductionist approach; 
[257] which applies this to modelling organisations; as a result of self-organisation [205]; the 
incompatibility of information and computation [243]; as a result of the epistemic cut between 
syntax and semantics [347]; number of elements an instance of a pattern must consist of to 
exhibit all the characteristics of a class [210]; and [323] which discusses Rosen’s approach 
[384, 389] and relates this to the “sciences of complexity”. This approach to complexity seems 
particular to biology, for general surveys of the connection of complexity with holism see [244, 
348, 388, 481]. Some suggest that this may be due to using the wrong formal language for 
modelling, including [74, 167, 246, 244, 330, 344, 410, 482, 488]. 

2.26 Kauffman’s complexity.  

(Xing and Manning, 2005): Kauffman (1993) defined complexity as the “number of conflicting 
constraints.” The definition represents the difficulty of specifying a successful task within the 
constraints or “rules” imposed. For example, an airspace can be made less complex by removing 
air traffic constraints such as military zones, bad weather, etc. Note, however, that the definition 
is only concerned with the complexity factor of structural rules. 

2.27 Kemeny's Complexity 

(Edmonds, 1999): In the field of “simplicity”, Kemeny [254] attributes an integral measure of 
complexity to types of extra-logical predicates. He does it on the basis on the logarithm of the 
number of non-isomorphic finite models a predicate type has. On the basis of this he gives extra-
logical predicates a complexity which could be used to decide between equally supported 
theories. This is similar in style and direction to Goodman’s measure in section 8.13 on page 
143. 

(Sommerer and Mignonneau, 2002): In the field of “simplicity,” John G. Kemeny [72] 
attributes an integral measure of complexity to types of extra-logical predicates, on the basis of 
the logarithm of the number of non-isomorphic . nite models that a predicate type has. On the 
basis of this he assigns to extra-logical predicates a measured complexity ranking that could be 
used to decide between equally supported theories. This is similar in style and direction to 
Goodman’s measure above. 

2.28 Kolmogorov complexity 

(Xing and Manning, 2005): According to information theories, the most straightforward 
definition of complexity is the minimum description size. Hence Kolmogorov complexity is defined 
as the minimum possible length of a description in some language (Casti, 1979). For instance, if 
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a description can be greatly compressed without loss of meaning, then it is considered simpler 
than one that cannot. By this definition, highly ordered expressions appear as simple and random 
while maintaining maximal complexity. 

2.29 Layout Appropriateness 

(Xing and Manning, 2005): Tullis’ metrics are task independent. They are focused on the 
general appearance of an interface. Therefore, it is more useful for predicting user preference 
than user performance other than search time. In contrast, task-sensitive metrics are more useful 
in understanding what users do with an interface and how to make the interface more efficient. 
For instance, Sears (1994) proposed a measure, called Layout Appropriateness, to evaluate the 
efficiency of the organization of objects in an interface. This metric first computes the cost of a 
layout using the following formula: Cost = sum (frequency of transition × cost of the transition). 

2.30 Length of Proof 

(Edmonds, 1999): Simpler theorems, on the whole, need shorter proofs. On the other hand 
longer proofs are tedious to follow. Thus it is natural to search for short proofs (e.g. as in [96]). 
One can arbitrarily lengthen almost any proof. This alone makes length alone as a measure of 
complexity unsatisfactory. Some short “elegant” proofs are very complicated and some careful 
long explanatory proofs easy to follow. For this measure to make any sense needless length needs 
to be eliminated (see minimum size measures in section 8.24 on page 149). Other papers touching 
on this include: [180, 209]. 

2.31 Logical Complexity/Arithmetic Hierarchy 

(Edmonds, 1999): Mathematical proof theorists classify mathematical objects and processes 
according to the projective hierarchy (sometimes called the arithmetic hierarchy). Girard [178] 
surveys this area thoroughly. [107] shows that the arithmetic complexity of the problem of 
deriving a word from a fixed starting point is arbitrarily more complicated than the word 
problem itself. 

2.32 Logical depth.  

(Xing and Manning, 2005): Logical depth is defined as the computational cost (time and 
memory) taken to calculate the shortest program that can reproduce a given object (Bennett, 
1990). By this definition, complexity is the difficulty of computation from a random starting point 
to the resulting state. This measure is aimed at the complexity of the process and not the results. 
That is, it is a combination of both storage and computational power.  

2.33 Loop Complexity 

(Edmonds, 1999): The loop complexity of a primitive recursive function is the iteration depth of 
the primitive recursive register operators in its definition. Thus x+1 would be level 0, x+y level 1 
(as it can be defined recursively from x+1), x´y level 2 etc. This can be used to define a hierarchy 
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of sets LOOPn of functions with loop complexity not greater than n [322]. This is one of the large 
collections of measures used to predict the maintainability of software, for a survey of these see 
[498]. 

2.34 Low Probability 

(Edmonds, 1999): The connection of probability and complexity is intricate. The probability of a 
highly ordered complex system arising by chance is low, hence sometimes complexity is 
associated with low probability [136]. On the other hand if complexity is conflated with 
informational measures such as entropy (section 8.12 on page 143) or algorithmic information 
(section 8.2 on page 136) then complexity is associated with high probability. This has led many 
to look for other measures such that complex systems will lie between order and disorder 
including those in section 8.16 on page 145 and section 8.46 on page 161. In the contrary 
direction the philosophy of “simplicity” (section 6.5 on page 129 and section 8.37 on page 156) 
has lead to the identification of a higher a priori probability of the truth of a theory with a lack of 
complexity. That this is mistaken see the arguments in section 6.5 on page 129 and the paper in 
Appendix 6 - Complexity and Scientific Modelling. An application of low probability to the 
difficulty of system diagnosis is in [183]. 

2.35 Minimum Number of Sub Groups 

(Edmonds, 1999): The Krohn-Rhodes prime decomposition theory [17, 272] tells us that we can 
decompose any semi-group in to a wreath product of alternating simple groups and semi-groups 
of order 3. There are decompositions which are minimal in terms of the number of such 
alternations, i.e. they have the least number of groups in their decomposition. The number of such 
groups is called the complexity of the original group. If you take the product of a group with 
another group then the result will be more complex, which accords with our intuitions. 

2.36 Minimum Size 

(Edmonds, 1999): As discussed in section 3.4.3 on page 58, minimum size overcomes some of the 
inadequacies of mere size as a complexity measure. It avoids the possibility of needless length 
and is nicely independent of the particular expression chosen. It would correspond to using a 
perfectly efficient language, the occurrence of any redundancy in a specific expression was 
eliminated by perfect compression. However the minimum size of a particular representation can 
still be a largely accidental feature of the description process. Different ideas are sometimes 
more succinctly expressed in different languages (national and formal). For example, to express a 
conjunction in a negation-implication fragment of classical propositional logic is necessarily 
longer than that for implication itself. This would not mean that implication was simpler that 
conjunction. Minimum size also ignores any question of inter-relatedness or relevance. Compare 
the cases of 1001 inter-related facts about logic and 1001 unrelated general knowledge facts 
(presuming this to be possible). It is probably possible to compress the 1001 inter-related facts 
more than the unrelated ones because the very fact of their relatedness indicates a degree of 
redundancy. The minimum size approach to complexity would thus attribute a lower complexity 
to the 1001 related facts but few would say these were less complex. What is true is that the 
system of unrelated facts holds more information but is far complex (as a system). In a way that is 
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similar to what occurred for length measures, some of these seem to have had the label 
“complexity” applied post-hoc, so it is difficult to judge how seriously they were meant as a 
complexity measure. The most frequent special case of a minimum size measure is Algorithmic 
Information which corresponds to a minimal sized Turing Machine (see section 8.2 on page 136), 
but other minimum size approaches are also used with other formal languages, in particular 
finite automata (see section 8.32 on page 153), this approach is criticised in [43] for the analysis 
of equilibria in repeated games. Crutchfield generalises the minimal size criterion over the whole 
formal language hierarchy, so that complexity is the minimal size in the “lowest” formal 
language for which this is finite [121]. He contrasts this complexity measure with a version of 
effective measure complexity (section 8.16 on page 145) which he calls “statistical complexity” 
[123]. The method for finding such an expression is given in [119] and applied to the process of 
modelling chaotic process in [120, 121]. Minimum size measures have also been applied to 
capture the static complexity of cellular automata in [472]; and to a minimal complexity in 
evolution [296]. 

2.37 Mutual Information 

(Edmonds, 1999): If you have defined an entropy like measure (e.g. Shannon Entropy or 
Algorithmic Complexity), H(A) and from that a joint entropy H(A;B) which is the entropy of A 
and B joined, then you can define. This can be interpreted as, i.e. the extent of the shortening 
when considered together rather than separately. A high mutual information between remote 
parts of a system can indicate a closely connected or self-similar system. The connectiveness in 
such a system can be the cause of its complexity. Bennett [55] points out that this arises for 
rather different reason in equilibrium and non-equilibrium systems. In equilibrium situations the 
mutual information comes from the intervening medium (like in a gas), in non-equilibrium 
systems it must come from some other connection. He points out that simple operations like 
duplicating and mixing up random bits of DNA generate large amount of remote non-equilibrium 
mutual information. [287] shows that past-future mutual entropy is not related to entropy in a 
straight-forward manner. [7] formulates “physical complexity” as the mutual information 
(defined relative to a Landuer-Turing Machine) between a systems and its universe. Mutual 
information has been applied to capture some of the dynamic complexity of cellular automata in 
[289]. 

(Xing and Manning, 2005): Complexity is indicated by levels of mutual information that 
measure the correlation between information at sites separated by time and space (Langton, 
1991). This definition describes the computational power requirement. For example, if each 
controller only needs to handle aircraft within one’s sector regardless of traffic in the next sector, 
the task would be less complex because traffic in the next sector is not relevant to his or her 
problem space. 

2.38 Network Complexity 

(Edmonds, 1999): Network or circuit complexity is the minimum number of logical gates needed 
to implement a logical function [400]. This is very difficult to compute in most cases but some 
upper and lower limits can be proved. This measure depends on the choice of logic gates that you 
can use to build the circuits from. This measure has an immediate importance for electronic 
engineers who seek to minimise the expense of logic gates as in [278]. This is polynomially 
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related to Horn Complexity (section 8.14 on page 143). For surveys of results in this field see 
[40, 142, 400]. 

2.39 Number of Axioms 

(Edmonds, 1999): Meredith and Lukasiewics both put considerable effort into finding small 
axiom sets for classical propositional logic. However it is far from obvious that this is helpful. 
The axiom has no immediately comprehensible meaning and it makes for an incredibly tortuous 
proof theory. For more on this see section 5.6.1 on page 113. 

2.40 Number of Dimensions 

(Edmonds, 1999): In any model of a process, the number of dimensions it takes is of critical 
importance. A necessarily high dimensional model has the potential for great complexity. 
Conversely if there is a simple relationship between dimensions in a model you can often reduce 
the models dimension by forming composite dimensions with out any loss of descriptive power. 
Hence if a model is necessarily of high dimension then there is no very simple relationship 
between any of its several dimensions, i.e. the model must be reasonably complex. This has been 
applied to concept learning [298]; the performance of connecting networks [307] and in 
cognitive complexity (section 8.5 on page 139). Fractal dimension is used to measure plant 
development in [113]. 

2.41 Number of Inequivalent Descriptions 

(Edmonds, 1999): If a system can be modelled in many different and irreconcilable ways, then 
we will always have to settle for an incomplete model of that system. In such circumstances the 
system may well exhibit behaviour that would only be predicted by another model. Thus such 
systems are, in a fundamental way, irreducible. Thus the presence of multiple inequivalent models 
are considered by some as the key characteristic of “complexity”. These people are usually 
holists, namely [323, 389]. See also section 4.3.1 on page 83. This approach can be extended in 
restricted circumstances to measuring complexity by the number of inequivalent descriptions [88, 
89]. 

(Sommerer and Mignonneau, 2002): If a system can be modeled in many different and 
irreconcilable ways, then we will always have to settle for an incomplete model of that system. In 
such circumstances, the system may well exhibit behavior that would only be predicted by another 
model. Thus such systems are fundamentally irreducible. Accordingly, the presence of multiple 
inequivalent models has been considered by Robert Rosen [76] and Howard Pattee [77] as the 
key characteristic of complexity. Casti [78] extends this approach and de.nes complexity as the 
number of nonequivalent descriptions that an observer can generate for a system with which he 
or she interacts. The observer must choose a family of descriptions of the system and an 
equivalence relation among them— the complexity is then the number of equivalence classes the 
family breaks down into, given the equivalence relation. 
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2.42 Number of Internal Relations 

(Edmonds, 1999): If one is focusing on the topology of a model, then one improvement on the 
simple size of the network as an indication of its complexity is the number of relations indicated 
between the nodes. Rouse and Rouse [392] in their study of the time taken to complete tasks 
found a strong correlation between the time taken to perform fault diagnosis tasks with complex 
relations and the number of internal relations in that circuit (represented by a wiring 
connection). Van Emden [450] examines the mathematics of a variety of entropic measures based 
on the information indicated by the internal relations at different levels. 

2.43 Number of Spanning Trees 

(Edmonds, 1999): An interesting graphical measure is the number of spanning trees of a graph 
(see also section 8.7 on page 140). A spanning tree is a subgraph with no loops which includes 
all the vertices. The number of spanning trees grows very fast with the cyclomatic number and 
size of the graph. A tree has only one spanning tree [252]. [58] applies this to a classification of 
games. [226, 237] use such trees as the basis for a measure of complexity to capture the variety 
in the structure of trees. 

2.44 Number of States in a Finite Automata 

(Edmonds, 1999): Much formal work [231] has been done on the number of states of finite 
automata. In these works this number is frequently taken as the complexity (e.g. [164]). Again it 
is easy to elaborate a model by adding redundant states, a difficulty which is circumvented by 
selecting a minimal or “acceptable” model (see section 8.24 on page 149 above). Gaines [165] is 
pessimistic about a useful general theory of complexity, saying: “The ordering of models in terms 
of complexity is arbitrary and depends upon our individual points of view.”, and again: “When 
we specify an order relation upon the models we may find that the behaviours of many important 
systems require complex models under our ordering, whereas, with a different ordering on the 
same class of models, they all become simple.”. He, nonetheless, introduces the useful concept of 
admissibility (borrowed from statistics [465]) and applies it to the search for simple finite-state 
automata for various string patterns. He uses a working definition of complexity which counts the 
number of states of an automaton and then goes on to identify, with the help of the program 
ATOM, admissible models of various sizes. Here models are said to be admissible if any other 
model that gives a better approximation of the behaviour is more complex (in the sense of number 
of states). In [164] he shows that even a small amount of randomness can cause an indefinite 
increase in an induced automata model. This work is extended in [396] to stochastic automata. 
Von Neuman speculated that there was a critical threshold which allowed self-reproduction 
[454]. In [303] it is shown that Turing machines with very few states can exhibit complex 
behaviour. Complexity as the number of states in a finite automata has been widely applied: to 
characterise the emerging complexity resulting from the actions of cellular automata [289, 472, 
473, 474, 476]; in economic game theory [229]; to characterising social structure [9] and in 
characterising the computation done in chaotic systems [122].  
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2.45 Number of Symbols 

(Edmonds, 1999): The number of symbols is not a reliable guide to complexity. Merely to count 
the number of symbols in philosophical works would give one little indication of their complexity. 

2.46 Number of Variables 

(Edmonds, 1999): The number of variables in a statement can have an immediate impact both on 
proofs that use it and the complexity of its models. Both of these effects depend on the structure of 
the statement. For example the axiom a->b has a catastrophically simplifying effect on both 
proofs and models compared to that of a->a. As with the number of symbols (section 8.33 on 
page 154 above) the number of variables can have a limiting effect on complexity but the number 
of variables is not a sufficient condition for complexity. Diamond and McKinsey proved [139] 
that for a broad range of logics you need at least one axiom with three variables in it. 

2.47 Organised/Disorganised Complexity 

(Edmonds, 1999): Weaver [464] classified scientific problems into the simple, and the complex. 
Then he further classified the complex problems into those of disorganised complexity and 
organised complexity. Simple problems are those with a few variables like the path of a billiard 
ball and a complex problem is one with many variables like a gas. Disorganised complexity is 
typified by many independent variables, so that it is amenable to statistical techniques. Examples 
of this are the properties of a gas or a nation's accident statistics. Organised complexity occurs 
when “There is a sizeable number of factors which are interrelated into an organic whole” 
Examples given by him include the immune system of animals and economic fluctuations. 

2.48 Pattern complexity 

(Xing and Manning, 2005): Unlike Boltzmann-based complexity, pattern complexity of an image 
is based on measures of visual features. Orland et al. developed an algorithm to measure pattern 
complexity (Orland, Weidemann, Larsen, & Radja, 1994). Pattern complexity includes measures 
of color, edges, fractal dimensions, deviation and entropy. While the measure is somewhat 
correlated to human judgment of image appearance, it is not a solid predictor of perceived 
complexity. Klinger and Salingaros (2000) proposed a pattern complexity index based on the 
following visual features: size, density, line curvature, color, symmetry, similarity of shapes, and 
correctness of form. In their algorithm, complexity is composed of two components: Harmony 
and Temperature. Harmony H measures the correlation of subunits via symmetries; Temperature 
T measures symbol variation. The temperature components for complex structures were: 1) 
intensity and size of details; 2) differentiation density; 3) line curvature; 4) color-intensity; and 5) 
color-contrast. Harmony is a similar five-part sum composed of the following symmetry values: 
1) vertical and horizontal reflections; 2) translations and rotations; 3) shape-similarity; 4) form-
connectedness; and 5) color-matching. Pattern complexity can then be computed as C = T (Hmax 
- H).  
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2.49 Shannon Information & Concept of Entropy 

(Edmonds, 1999): Although Shannon [408] did not envisage his measure of information being 
used to quantify complexity, some of his successors have either used it as such or based 
complexity measures upon it. The Shannon measure of information is a statistical measure based 
on the probability of receiving a message. If p(m1), p(m2), … are the probabilities of receiving 
the messages m1, m2, … then the information carried by the message n1, n2, … is defined as -
SUMi(log2(p(ni)). The more improbable the message, the more information it gives the recipient. 
See the section on information (section 8.15 on page 144) and entropy (section 8.12 on page 
143). 

(Sommerer and Mignonneau, 2002): Shannon Entropy [70] can be seen as the dif.culty of 
guessing the content of a message passing down a channel, given the range of possible messages. 
The idea is that the more dif.cult it is to guess, the more information a message holds. This 
concept was not intended as a measure of complexity, but has been used as such by subsequent 
authors. 

2.50 Simplicity 

(Edmonds, 1999): When faced with two theories which are equally supported by the available 
experimental evidence, it is natural to choose the simpler of the two. Further than this, when a 
theory has been elaborated in order to explain the evidence, it is often fruitful to search for a 
simpler theory. The study of the grounds for choosing between equally supported theories has 
acquired the label “Simplicity” (see [4, 78, 186, 253, 254, 339, 485]). From the point of view of 
theories about the world, all purely logical propositions are equally and  ultimately certain and 
hence “simple”. Thus measures of simplicity do not help us to distinguish between logical 
theories, they were not meant to. Many theories of Simplicity have chosen grounds other than 
simplicity as the criterion for choosing between equally supported theories, e.g. Popper's 
refutability [358] or Defrays [241] identification of Simplicity with high probability. Some 
theories with connections with complexity are Goodman's (section 8.13 on page 143), Kemeny's 
(section 8.18 on page 146) and Sobers (section 8.41 on page 158). For a fuller discussion of this 
see section 6.5 on page 129 and Appendix 6 - Complexity and Scientific Modelling. 

2.51 Size, Number of Parts 

(Edmonds, 1999): There is clearly a sense in which people use “complexity” to indicate the 
number of parts but seems rarely used just to indicate this. It would be odd for a person opening 
a phone book or a large box of matches to exclaim “Oh, how complex!”. Contrast these examples 
with those of a mathematical text book or an intricate (old fashioned) watch, where this would be 
more appropriate. Size seems not to be a sufficient condition for complexity. On the other hand a 
certain minimum size does seem to be a necessary condition for complexity. It is very hard to 
imagine anything complex made of only two parts. However, this minimum size can be quite 
small: small non-abelian mathematical groups can be very complex indeed as are many other 
formal systems with a sparse axiomatisation. The rate of potential complexity seems to increase 
very fast with size. This does not, of course, mean that all large systems are complex. Size based 
measures of complexity seem to come about in two circumstances: as a result of a post-hoc 
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labelling of a formal device (as in simple induction proofs where the length of a proof, the 
number of connectives or the depth of nesting is in need of a convenient label) and to indicate a 
potential for complexity (as in the number of variables in a formula). Anderson points out that 
size can make a qualitative difference to the behaviour of systems [13] as [454] also suggests, but 
[303] indicates that in the presence of powerful inferential machinery that the critical size can be 
very small. Applications include: the social organisation and community size [83]; the minimum 
number of gates in a circuit [278]; the cyclical behaviour of systems [458]; self-replicating 
sequences [44]; rule-based systems [341]; neural networks and cellular automata [188]; and 
grammatical development [256]. See also the discussion in section 3.4.1 on page 57 and the other 
size and numerosity based approaches in this appendix. 

2.52 Size of Grammar 

(Edmonds, 1999): A pattern, if viewed as the result of production rules in a language, has a 
grammar [231]. In general the simpler the pattern, the simpler the grammar. So the size of the 
grammar gives us a handle on the complexity of the pattern. The size and complexity Syntactic of 
the grammar can vary depending on what sort of language you are assuming the pattern to be a 
representative of. For instance Gaines [164] shows that the assumption that a process can be 
modelled by a deterministic finite automaton leads to very large models (proportional to the 
length of the evidence) in the presence of even a small amount of indeterminism. This measure 
would identify all patterns of a particular language as equally complex unless the pattern 
happens also to be a member of another language as well. Sahal [396] demonstrates similar 
results, but with stochastic automata. Frequently the size of grammar is taken relative to a Turing 
machine (section 8.2 on page 136) or finite automata (section 8.32 on page 153). Other 
approaches include simple depth (section 8.44 on page 160) or star height in regular languages 
[153]. Applications include: biological macromolecules [146]; chaotic systems in physics 
(section 8.16 on page 145); and communication complexity [235]. 

2.53 Size of matrix 

(Edmonds, 1999): The size of a minimal characteristic matrix for a logic is an indication of the 
logic's complexity [209]. Classical logic has the smallest possible matrices (2x2), and more 
complex logics like R, do not have finite characteristic matrices at all. This measure is an 
indication of the the complexity of logic's semantics but does not have a direct relationship with 
the complexity of its proof theory (see section 5.6.2 on page 117). This sort of approach has been 
applied to: the stability of computational communities [259]; flow dominance in layout problems 
[215]; and hierarchical decomposition of systems [72]. 

2.54 Sober's Minimum Extra Information 

(Edmonds, 1999): In the field of the “simplicity” of scientific theories, Sober [418] rejected the 
idea of an absolute measure in favour of that of an ordering based on how much extra 
information would be needed to select an answer to a particular question: this is implicitly as 
relativised informativeness. Thus simplicity was to be relative to a question (represented by a set 
of possible answers). The theory that needs the least minimum extra information to select an 
answer to the question is deemed the simpler one. When one is judging theories with respect to a 
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number of questions one must decide a weighting of the relative importance of the questions, to 
decide the overall simplicity. Sober applies this to mathematical and logical fields by examining 
how the fundamental axioms are chosen. This is done by seeing how much information they 
contribute to the question of whether the axiom is true in our world or not. According to Sober 
“This mirrors our belief that a contraction in the axiom set is a gain in simplicity. Moreover, a 
proof that the axioms are mutually independent is a proof that the axiom set is maximally simple; 
no axiom is redundant. And a proof that the axiom set is complete simplifies our view of the area 
being axiomatised, for it assures us that relative to the axiom set, every truth is redundant.” Next 
Sober considers some logical properties of (extra-logical) relations by considering the 
informativeness of them relative to the general question of whether two objects are related. Thus 
he arrives at similar conclusions to Goodman (e.g. a symmetrical relation is simpler that an anti-
symmetrical one etc.). 

2.55 Sophistication 

(Edmonds, 1999): Koppel [268] defines “sophistication” as a measure of the structure of a 
string. He says: “The minimal description of a string consists of two parts. One part is a 
description of the string's structure, and the other part specifies the string from among the class 
of strings sharing that structure (Cover 1985). The sophistication of a string is the size of that 
part of the description which describes the strings structure. Thus, for example, the description of 
the structure of a random string is empty and thus, though its complexity is high, its 
sophistication is low.”  

2.56 Stochastic Complexity 

(Edmonds, 1999): Rissanen [379] finds the idea of “shortest code length” (like algorithmic 
complexity) attractive but difficult to apply when modelling physical processes. He estimates the 
minimum code length of data encoded with a probabilistic model, using Shannon's coding theory. 
This can be seen as a statistical and computable version of algorithmic information (section 8.2 
on page 136) as well as an attempt to establish a principled trade-off between a model’s 
complexity and error rate (see Appendix 6 - Complexity and Scientific Modelling). Re-christened 
as the minimum description length (MDL) principle [378], it has been successfully applied to 
machine learning [377, 493]. 

2.57 Structural Complexity 
(Xing and Manning, 2005): In simplest terms, absolute structural complexity equals the number 
of states (Stevens, Myers, & Constantine, 1974). Relative structural complexity is the ratio of the 
number of transitions to the number of states, i.e., the number of transitions per state.  

2.58 Structure density.  

(Xing and Manning, 2005): Kornwachs (1987) proposed “structure density” as a measure of 
system complexity. This measure estimates the actual density of transitions compared with the 
maximal possible density. Let S be the number of all possible states of a system and T be the 
number of actual transitions. The maximal possible number of transitions is S * (S-1). Then the 
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structure density is defined as T/(S*(S-1)). By this definition, the structure density of the above 
example is 4/(3*(3-1))=0.66. 

2.59 Syntactic Depth 

(Edmonds, 1999): The deeper phrases are embedded in a statement (according to some syntax), 
the more difficult they are to understand. Identifying the ease of comprehension is one of the 
primary purposes of measures of syntactic complexity in formal language theory. In 1960 Yngve 
[483] proposed depth of postponed symbols as a measure of syntactic complexity, this was 
criticised by Miller and Chomsky [326] on formal grounds. They preferred the degree of self-
embedding because it was “… precisely the property that distinguishes context-free languages 
from the regular languages.” Other measures proposed in [383] include depth and nesting. The 
depth of a syntactic expression is the maximum number of arcs from root to leaf when 
represented in a tree form. This has nothing to do with either “logical depth” (section 8.4 on 
page 138) or “thermodynamic depth” (section 8.46 on page 161). From the point of view of a 
modeller, depth is a useful way to stratify a space of expressions in a recursive language, as 
typically the number of possible expressions goes up exponentially with the depth. Although as 
[349] points out this could be done in any number of ways. Thus depth is relevant to the problem 
of induction whether by humans (see section 6.5 on page 129 and Appendix 6 - Complexity and 
Scientific Modelling) or in machine learning [111, 148, 333]. Syntactic depth as an indication of 
complexity has also been applied to menu design [239]; the difficulty of resolution of ambiguity 
[174] and circuit design [355, 356]. 

2.60 Tabular Complexity 

(Edmonds, 1999): Tabular complexity is an adaptation of Kolmogorov's e-entropy [267] by 
Vitushkin [453]. It is a measure of the complexity of finite-state automata (see also section 8.32 
on page 153). To calculate it one takes the tables representing the change of state and the output 
of the semi-group of the states of the automata and then decomposes these tables into smaller 
sub-tables, also allowing for the decomposition of the “wiring” (the connections) between these 
sub-tables etc. The minimum total volume obtainable is the tabular complexity, i.e. it is the 
volume of the most compact tabular representation. Thus tabular complexity is similar to It is 
only applicable to processes modellable by finite automata (a proper subset of those computable 
by a Turing Machine). The tabular complexity can be very difficult to calculate but estimates can 
be produced by exhibiting specific tables. 

2.61 Time and Space Computational Complexity 

(Edmonds, 1999) Computational complexity is now a much studied area with many formal 
results. It is usually cast as the order of the rate of growth of the resources needed to compute 
something compared to the size of its input. Such time and space complexity measures are the 
most studied computational measures. Articles which include the word complexity often refer to 
these. They reflect the degree of effort required to compute a problem, independent of particular 
instances of that problem. They are fairly rough measure because they only give the degree of 
increase to within a constant factor, e.g. the order of the polynomial with which they increase. 
This is because of possible variations in the abstract computer that does the calculation. Several 
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variations of this have been proposed, including: extension to other fields like the real numbers 
[66]; continuous complexity models [318]; information based complexity (which adds a cost 
function to the information used) [440, 441, 442]; and using uniform rather than logarithmic size 
[211]. Applications include: social choice theory [251]; grammatical inference [155];learning 
[184]; simplification in logic [315]; feasibility of reasoning by a limited agent [281]; 
communication [235]; induction [111]; simulation [335]; control theory [486, 487]; perceptrons 
[500]; improving performance on 3-SAT problems [230]; and propagation in boolean circuits 
[425]. Summaries of the field can be found in [40, 41, 70]. 

2.62 Topological complexity.  

(Xing and Manning, 2005): Crutchfield and Young (1989) extended the concept of Kolmogorov 
complexity by defining complexity as the minimal size of a model representation of a system that 
can statistically reproduce the observed data within a specified tolerance. Consider, for example, 
two air traffic cases. In the first case, ten aircraft are flying on two fixed routes that have one in-
tersection. In the second case, ten aircraft are flying off the routes, which can create many 
potential conflicts. A controller can build a model of the first case that has two flows of aircraft 
and one crossing point, while a model of the second case has to be composed of many flows and 
crossings. Thus the topological complexity of Case A is less than Case B. This definition takes 
into account both the minimal size and the fixed hierarchy or structural rules of a system. One 
shortcoming of the definition is that it does not provide a unique measure of complexity for a 
system because there is not necessarily a “minimal” model for it (Pressing, 1999). That is, users 
may construct different models of the same system. In addition, neither this nor the definition 
above is sufficient to describe complexity because they only emphasize the storage resource that 
it takes to solve a class of problems. 

2.63 Tulis' Display complexity 

(Xing and Manning, 2005): Perhaps the most useful tool to quantify the information and layout 
of screen elements is Tullis’ metric of display complexity (Tullis, 1984, 1985, 1986). Tullis 
studied over a thousand computer-generated displays. He measured search time to locate items 
on the displays and collected subjective ratings of ease of use. The results revealed that four basic 
characteristics of display formats affect how well users can extract information from the displays:  

1. Overall density — the number of characters displayed, expressed as a percentage of the total 
spaces available. 

2. Local density — the number of other characters near each character. 

3. Grouping — the number of groups and average group size, both describing the extent to which 
characters on the display form perceptual groups. The groups can be determined by considering 
the white space around them. 

4. Layout complexity — the extent to which the arrangement of items on the display follows a 
predictable visual scheme, typically computed as the differences in view angles between the items. 
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2.64 Variety 

(Edmonds, 1999): A complex system is likely to exhibit a greater variety in terms of its behaviour 
and properties. Thus variety is an indication of complexity (though not always as sometimes a 
very complex system is necessary in order to maintain equilibrium). Variety can be measured by 
the simple counting of types, the spread of numerical values or the simple presence of sudden 
changes. In this way it overlaps with information (section 8.15 on page 144) and entropic 
(section 8.12 on page 143) measures. Applications include: punctuated behaviour [38]; stability 
of ecosystems [353]; competing behaviours and control [357]; tree structures [237]; number of 
inequivalent models [89]; the interaction of connectivity and complexity [218]; and evolution 
[316]. 
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3 Conclusion 

A number of 64 different ways of formulating complexity are listed and briefly described in this 
document. While this list is not complete it provides the reader a first reference for finding most 
currently used key words on this subject. By using proposed searching methods described in 
Chapter 1, the reader will then be able to find the needed information 1) in this document; 2) in 
Edmonds (1999); or 3) over Internet. 
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